

Software Defined Networks and Network Function Virtualisation
Testbed within FIRE+

Virtual Security Functions on a Federated and
Orchestrated Virtualisation Testbed

Security as a Service provided by the SoftFIRE Security Manager

April 2018

 SoftFIRE

2

Table of Contents

Table of Contents .. 2

List of Figures .. 3

1 Introduction .. 4

2 SoftFIRE’s Transition from SFA to TOSCA .. 5

3 SoftFIRE’s Security Approach .. 6

3.1 Security as a Service .. 6

3.1.1. Why SECaaS? ... 6

3.1.2. Security resources ... 7

4 Technical Aspects .. 8

4.1 Security Manager .. 8

5 Security as a Service Use Cases ... 10

5.1 Flow Match Criteria and Actions in SDN ... 10

5.2 Use Cases for SDN-based SECaaS .. 12

5.2.1. Use Case #1: Port based traffic filtering .. 12

5.2.2. Use Case #2: Traffic mirroring ... 12

6 Future Work: Distributed Security Probes .. 13

7 Conclusions ... 14

Bibliography .. 16

List of Acronyms and Abbreviations .. 17

 SoftFIRE

3

List of Figures

Figure 1. Security Manager architecture ... 8

Figure 2. Sample SDN flow rule to match a specific destination IP address. 10

Figure 3. Sample SDN rule to match for all HTTP traffic from a specific source IP address. 11

Figure 4. SDN instruction to forward traffic to a specific destination IP address. 11

Figure 5. Use Case #1: Firewall filtering traffic flows based on application ports.

Figure 6. Use Case #2: Traffic mirroring .. 13

Figure 7. Schema for distributed security probes. .. 14

 SoftFIRE

4

1 Introduction

Network Functions Virtualisation (NFV) [1] and Software-Defined Networking (SDN) [2] are
beginning to have a key role in the telecommunications industry. The capabilities offered by NFV
introduce new features to network services, with the possibility to virtualise and extend a
network infrastructure by means of implementing network functions as software without the
need for specialised hardware. On the other hand, SDN facilitates flexible and dynamic network
management. It enables dynamic programmability of networking components. SDN also
provides the possibility to add more flexibility to a cloud infrastructure. Together, these two
virtualisation technologies, i.e. NFV and SDN, allow network operators to manage their network
resources flexibly, whilst providing control and customisation of network services to end users.

In a context where a cloud platform is assembled as a federation of multiple component
testbeds, it is necessary to make the platform’s individual components inter-operable, even if
they are based on different technologies, different management rules, and different networking
capabilities. The SoftFIRE federated virtualisation platform [3] offers such interoperability
capabilities by providing a heterogeneous environment in which a common access interface for
all testbeds is exposed. On this basis, platform users can leverage NFV and SDN technologies in
their virtualisation experiments.

One of the crucial aspects in the context of a federated virtualisation platform is security, in
terms of:

1. Platform access,

2. Running set of network services initiated and used by platform users.

In project SoftFIRE [3]1, platform access is restricted to authorised users. Towards this, the
project has set up a point-to-multipoint VPN in order to prevent access to the platform by an
external subject.

In regard to security of running network services, several measures have been taken, consisting
of a monitoring tool that can provide a dynamic and flexible method to configure security
policies. Initially, this security monitoring tool was configured to work with already deployed
physical resources in each testbed, which act as security probes that are able to perform IDS/IPS
functions, and monitor the whole platform. However, because of the lack of scalability in this
solution, i.e. reliance on physical security units, as well as dynamic adaptability of such probes,
this solution was abandoned. Instead, the Project decided to provide security-oriented resources
to its end-users, i.e. experimenters. This approach offers security-oriented services that can
secure and protect network services, based on user requirements. As a result, SoftFIRE
Middleware’s [4] Security Manager [5] and the concept of Security as a Service (SECaaS) [6] as a
virtualisation solution have emerged.

This white paper describes an overview of the security measures and policies put in place on the
SoftFIRE platform, outlining how to ensure a sufficient level of security and privacy. The paper
introduces the Security as a Service concept, and explains how the Security Manager realises it.

1 SoftFIRE: Software Defined Networks and Network Function Virtualization Testbed within FIRE+.

 SoftFIRE

5

2 SoftFIRE’s Transition from SFA to TOSCA

SoftFIRE offers a federated heterogeneous experimentation infrastructure that allows to
develop services and applications in the NFV and SDN domains and in the perspective of 5th
Generation (5G) mobile network architectures. The platform is a loose federation of already
existing component testbeds owned and operated by distinct organizations for purposes of
research and development. Its main scope consists of providing the users, called experimenters,
with an infrastructure where they can build and run their own experiments. It is a project
proposed by the FIRE (Future Internet Research and Experimentation) initiative [7] with the aim
of being open and flexible, in order to integrate different aspects of each individual testbed. To
achieve this aim, SoftFIRE follows the standards defined by ETSI (European Telecommunications
Standards Institute) to design the architectural aspects of the platform that are necessary for
using NFV and SDN technologies. Open Baton [8] and OpenStack [9] represent the standard de-
facto implementations of the ETSI NFV architecture [10] for building and federating the SoftFIRE
infrastructure.

One of the major objectives of the SoftFIRE project is to make the interaction between external
experimenters and the platform easy and secure. Since the project is part of ICT FIRE [7] research
activities, compatibility/alignment with FIRE is necessary. During the initial phase of the project
and before the beginning of its 1st Wave of Experiments [11], SoftFIRE has deployed FITeagle
(Future Internet Testbed experimentation framework) [12], which is an open-source FIRE tool
that allowed experimenters to access the resources offered by the platform, providing
reservation, acquisition, monitoring, and release of the platform’s arbitrary resources needed
for building their experiments. Therefore, it was the main entry point for experimenters to
deploy their experiments. The distributed and heterogeneous nature of the platform meant that
FITeagle followed the standard Slice-based Federated Architecture (SFA) [13], and realised
interoperability of resources with different technologies.

The main reason to use FITeagle in SoftFIRE initially was to support and control the experiment
life-cycle. However, the Project had experienced that SFA would not fully support the usage and
exploitation of virtualization capabilities when exposing all the necessary features and
functionalities of the resources provided by the platform. Such exposure was actually possible
with TOSCA (Topology and Orchestration Specification for Cloud Applications) [14], which is a
cloud-based reference model for modelling network services. Using TOSCA, FITeagle could be
replaced by a new single point of platform access offered to the experimenters: the Experiment
Manager [15]. The motivations and approach used for this move to TOSCA has been explained
in [16]. This has not only made it possible to define a variety of resources and enable
configuration options for each resource in an extensible open-source code-base, but also made
it easier and quicker for experimenters to prepare and deploy their experiments. This approach
has also had an impact on the security solutions provided by the SoftFIRE platform. Specifically,
there was the need to introduce security mechanisms for offering security features to
experimenters as well as to secure the Experiment Manager itself. In the next sections, the
concept of Security as a Service (SECaaS) is presented and discussed.

 SoftFIRE

6

3 SoftFIRE’s Security Approach

The first security aspect that SoftFIRE took into consideration was to make the interaction
between an experimenter and the platform as secure as possible. Experimenters must connect
to the platform’s Virtual Private Network (VPN) server, running OpenVPN [17]. This means that
experimenters must authenticate with and have authorisation to access the platform.

Access credentials were provided to only those experimenters whose proposals were accepted
by SoftFIRE. After the approval of an experiment proposal, experimenters can register at the
Project’s web access portal and receive a VPN certificate, which grants them the right to access
the SoftFIRE VPN and manage their experiment lifecycle.

The second security feature that SoftFIRE has put in place is for the NFV and SDN capabilities of
the cloud environment, i.e. the virtualisation resources used by experimenters, whilst taking into
account the necessary support for flexibility, scalability, and a level of central control. This was
possible by adopting the concept of Security as a Service (SECaaS) [6].

3.1 Security as a Service

Security as a Service (SECaaS) is a business model for security management, in which a service
provider integrates several of their security services into a single infrastructure with a cost-
effective solution compared to what most individuals or corporations can provide on their own.
It is based on the Software as a Service model and considers security services and needs, whilst
not requiring any on-premise hardware. Normally, security services often include authentication
services, anti-virus, anti-malware/spyware, intrusion detection systems (IDS), intrusion
prevention systems (IPS), and so on.

3.1.1. Why SECaaS?

The choice to leverage the concept of SECaaS is due to two main reasons: (i) to evolve network
security services towards virtualisation, and (ii) to provide on-demand security solutions to end
users.

 Virtualisation in Security Services: Save time and money!

The traditional approach to deploy physical network security functions is time-consuming
and error-prone, due to the need for additional specialised hardware and increased
maintenance efforts and costs. It entails inefficient service provisioning, and represents a
serious problem for large federated cloud networks due to potential changes in security
policies and network topology. In addition, without SDN, network functions are configured
statically. This leads to lack of flexibility and adaptability for the network, and a consequent
change in network function characteristics and behaviour.

 On-demand Security: Benefits of NFV and SDN

In a federated cloud network, NFV and SDN offer a flexible and scalable approach to build
on-demand solutions that are readily available to platform users, which also reduce labour
and cost. NFV allows to deploy, manage, and provide different virtual network functions

 SoftFIRE

7

(VNF) in the form of security functions, and in a simplified manner. SDN allows to create
dynamic networks that are able to adapt to on-demand configuration changes, with a
centralised control of the network’s topology. With SDN, it is also possible to collect traffic
statistics in real-time. Together, NFV and SDN enables network services that can consist of
a variety of security resources, effectively minimising the number of security appliances that
would normally be needed in a physical infrastructure.

In SoftFIRE, SECaaS concept has been realized using three main entities:

 Security resources

These are specialised VNFs with a specific purpose to deliver security-related services,

e.g. a firewall or an intrusion detection system.

 Security chain

This represents a special case of Service Function Chaining (SFC) [18] that links two or

more VNFs using SDN, and improves the performance of NFV solutions, making them

dynamic. Specifically, it is a chain of security resources.

 Security Manager

This is the Middleware component [4] which is in charge of managing the life-cycle of

security resources. It enables creation, management, and termination of security

resources. Such operations are exposed to experimenters via the Experiment Manager

[15] interface.

3.1.2. Security resources

A security resource is essentially a security function which can be instantiated as a VNF instance.
A network service can use multiple security resources, providing an experiment with one or
more specific security capabilities. SoftFIRE provides two network security functions:

 Firewall

Firewall is a network security function that allows to perform network access control

via security policy definitions, including filtering and forwarding of network traffic.

SoftFIRE provides two kinds of these resources: (i) Uncomplicated Firewall (UFW)

[19], which a firewall configuration tool that allows to define simple security rules

to filter and route network packets, and (ii) pfSense [20], which is a free and open-

source firewall that has more complex firewall capabilities.

 Network IDS/IPS

Network Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)

are network security functions that allow mechanisms for analysing and identifying

network traffic. SoftFIRE provides these functions with Suricata [21], which is a free

and open-source network threat detection engine that is able to perform intrusion

detection and prevention, as well as network security monitoring.

 SoftFIRE

8

4 Technical Aspects

In the previous section, the SECaaS concept is introduced to justify the need for security
resources for virtual network services. Security Manager [5] is the implementation in SoftFIRE
to realise this concept. It is primarily based on the NFV architecture that the SoftFIRE
Middleware makes available through its NFV Manager [22], not only to experimenters but also
to the other SoftFIRE Middleware managers [4]. It is considered as a specialised NFV manager,
handling security resources.

In this section, the implementation choices and details of the Security Manager are explained.
Furthermore, two use cases are presented to explain how a security resource can be integrated
in a complex experiment including VNFs that require some sort of traffic chaining in order to
exploit security services.

4.1 Security Manager

Security Manager [5] is one of the SoftFIRE Middleware [4]’s sub-manager components. It can
be considered as a specialised form of the NFV Manager [22] in that it deploys security VNFs,
namely:

● A firewall service via the firewall resource (UFW on-board) [19],

● A combined IDS and IPS service via the Suricata resource [21],

● A combination of gateway, firewall, and routing service via the pfSense resource [20].

Figure 1. Security Manager architecture

Figure 1 shows the architecture of the Security Manager. Similar to the NFV Manager, to allocate
and deploy each security VNF, Security Manager contacts Open Baton. It interacts with Open
Baton [8] in order to deploy security VNFs (and eventually with OpenStack), and directly with
OpenStack [9][23] in case of pfSense.

When a user requests a network service that includes a security resource, this triggers the
Experimenter Manager to forward the request to the Security Manager. Specifically, this request
contains: (i) the type of the security resource, (ii) the ID of the experimenter, and (iii) requested
resource configurations. The Security Manager then stores some information regarding the

 SoftFIRE

9

experiment in a local database, and interacts with Open Baton or directly with Open Stack, based
on the kind of security resource requested by the user.

Security Manager can also provide a monitoring dashboard to store and analyse the logs
generated as a result of the deployed security VNF activities. This monitoring tool is based on
the Elasticsearch-Logstash-Kibana stack, known as ELK Stack [24].

The Security Manager handles the following life-cycle phases:

 Validate Resource: The resource definition file is checked and all the properties that it

contains are validated. Security Manager then proceeds to the next phase only if there

are no syntax errors or inconsistent values. Otherwise, it raises a

ResourceValidationError and rejects the experiment.

 Provision Resource: During this phase, the selected security resource is allocated and

deployed on OpenStack. Security Manager needs to upload the archive containing the

security resource definition in TOSCA syntax to Open Baton. Then, Open Baton mediates

the interaction between the Security Manager and OpenStack. To provide the

experimenter with access to the security VNF, the experimenter public key is uploaded

to the virtual machine hosting the security VNF.

 Terminate Resource: This phase is triggered when the experimenter decides to

terminate the network service containing one or more security resources. Using the

resource ID previously saved, Security Manager requests Open Baton to release all

OpenStack virtual resources associated with the security resource.

It must be noted that the pfSense resource must be managed in a different way compared to
how Firewall and Suricata resources are managed. This is because this technology is built on a
FreeBSD system [25] that has issues with interfacing with Open Baton. In order to handle all its
lifecycle phases, Security Manager interacts directly with OpenStack. This means that some
actions must be manually managed, which are transparent to the experimenter.

When the requested security resource is allocated and deployed as a VNF, the Manager takes
some additional steps to provide a usable resource to the experimenter. Specifically, a security
resource needs to be chained to those other locations/entities that it is supposed to protect by
declaring routing rules. For instance, a firewall would be useless if not connected to the network
endpoint that it needs to monitor. This requires enabling an important capability, which is port
forwarding. Without this capability, a virtual machine that runs a security VNF would be unable
to forward traffic, e.g. a firewall would not be able to send the traffic to its intended destination
after having inspected it.

The port forwarding mechanism is by default disabled by OpenStack in order to prevent IP
address spoofing. Such measure prevents a virtual machine from spoofing the identity of
another and eventually modifying or dropping its packets. To enable port forwarding and
configure it, Security Manager forwards a request to OpenStack through an API call. This request
is performed for each virtual machine in each VNF belonging to the network service that needs
to be secured. Essentially, Security Manager manages port forwarding by port security policies
[26]. By editing these policies, a properly configured firewall resource can intercept and analyse
the traffic generated by a Virtual Deployment Unit (VDU) belonging to the same tenant and
network.

 SoftFIRE

10

With traffic forwarding enabled, experimenters can manipulate traffic routing in order to include
security functions on traffic flows and to let packets reach security VNFs. This can be achieved
in various ways, yet the ideal way is to use an SDN controller provided by the SoftFIRE SDN
Manager. This method is preferable as it exploits a feature integrated with the platform and
enforces the concept of platform programmability. With SDN, it is possible to divert, mirror, or
drop traffic flows programmatically by sending instructions to the SDN controller that is in
charge of interacting with virtual switches installed in OpenStack. Many SDN controller
implementations are available as open-source or proprietary solutions; SoftFIRE provides the
following two: (i) OpenDaylight (ODL) [27], and (ii) OpenSDNCore [28].

5 Security as a Service Use Cases

In this section, two use cases are described in order to show how the SECaaS concept is applied
to a real context. Each use case is composed of a security resource and some other resources.

In order to use the security functionalities provided by a security VNF, it is necessary to chain
VNFs, which is possible with SoftFIRE’s SDN Manager. With an SDN controller, it is possible to
manage Open Virtual Switches (OVS) [29]. After an experimenter requests an SDN resource
provided by the platform, traffic can be directed to the security VNF without modifying the
routing tables of VMs.

Experiments can choose between two SDN controller implementations available on the
platform: OpenSDNCore [28] and OpenDaylight [27]2. In the below example, OpenDaylight (ODL)
and its OpenFlow API plugin are used, as ODL is considered to be a baseline project which many
other controllers are built on.

5.1 Flow Match Criteria and Actions in SDN

Traffic flows can be manipulated by sending HTTP requests to the SDN controller. The content
of the request is a JSON formatted file. In order to edit a flow, it is necessary to identify that
particular traffic by specifying a rule inside the request. Using the SDN terminology, a rule is
defined as a “match” and can be declared with a classic ACL match criteria based on protocol
types, port numbers, MAC addresses, and/or IP addresses, etc.

When a security VNF needs to protect another VNF, it needs to capture all the IPv4 packets
directed to a specific IP address. In the following example as illustrated in Figure 2, a “match”
rule for IP address 10.0.10.2 is created.

Figure 2. Sample SDN flow rule to match a specific destination IP address.

2 It must be noted that the platform is extensible, which means experimenters can integrate their own
SDN controllers, considering the API that SDN Proxy implementations in SoftFIRE are followed.

 SoftFIRE

11

It is possible to define more complex match rules when handling traffic flows more selectively.
Experimenters can achieve complex routing configurations by combining more match fields. For
example, it is possible to select all HTTP traffic flows generated by a virtual machine, regardless
of its MAC address, by matching the source VM IP address and the TCP destination port 80. This
is shown in Figure 3.

Figure 3. Sample SDN rule to match for all HTTP traffic from a specific source IP address.

A match criterion is followed by an “instructions” declaration, which includes the set of actions
that the SDN controller applies to the matched traffic. Each packet flow has one or more actions
associated it, which get executed once a packet matches the rule. In this case, the matched
packets are forwarded to the security VNF; i.e. the “instructions” must contain an action that
contains the security VNF’s IP address as the destination. In the following example (see Figure
4), traffic is redirected to IP 200.71.9.52/32, where the security VNF runs:

Figure 4. SDN instruction to forward traffic to a specific destination IP address.

These static SDN rules can be dynamically created or changed by a component that implements
the traffic logic. In this use case, the component that makes these decisions is the security VNF
itself.

By combining the features of the SDN controller and Security Manager, it is possible to
dynamically modify packet flows and enforce security policies. For example, by choosing
Suricata as a security resource, it is possible to perform Deep Packet Inspection (DPI) on traffic
flows that go through a local network. When a malicious sequence of packets is identified by the
security resource, a “<match, instructions>” rule pair is generated and forwarded to the SDN
controller in order to drop such malicious packets.

 SoftFIRE

12

5.2 Use Cases for SDN-based SECaaS

In this section, two use cases are presented, in which security policies are enforced on a set of
user resources, by exploiting SDN capabilities with OpenFlow [30] and Security Manager.

5.2.1. Use Case #1: Port based traffic filtering

In this use case, the considered network service is composed of a firewall resource and an NFV
resource with two Ubuntu virtual machines, depicted as Source_VM and Destination_VM in
Figure 5. The objective is to deploy these virtual machines in a virtual LAN where FTP traffic is
blocked; i.e. packets on port 21 are dropped by the firewall resource’s enforced SDN rule.

To implement this scenario, a
traffic rule can indeed be
statically set at the beginning.
However, such an approach
would not be ideal, as the
firewall VNF can make
decisions dynamically and set
routing rules by contacting the
SDN controller, which is a
better fit for dynamic
environments where firewall
operations do not need to be
statically kept but modified
when needed. In other words,

such security policies (converted into SDN flow rules) can now be applied on-demand, and based
on the traffic sent to/received from virtual machines. Furthermore, as opposed to static rules,
the capability to impose dynamic security policies makes it possible to apply security policies to
a subset of all running virtual machines, and modify this subset, depending on changing traffic
characteristics.

In this example, as depicted in Figure 5, a source virtual machine (called Source_VM) generates
two traffic flows: (i) Flow 1: legitimate traffic on port 80, and (ii) Flow 2: illegitimate traffic on
port 21. To block traffic on port 21 and allow traffic on port 80, the firewall resource applies an
SDN rule such that packets on port 80 get dropped, whereas those on port 21 are directed to
the destination VM.

5.2.2. Use Case #2: Traffic mirroring

In this use case, a Suricata resource is used to detect malicious traffic flows and trigger SDN
traffic flow changes to take actions against them. The Suricata resource sets more complex SDN
actions to be applied to traffic flows. Besides the Suricata resource, three virtual machines are
involved: (i) a source VM that produces legitimate traffic, (ii) a second source VM that produces
malicious traffic, and (iii) a destination VM.

To guarantee better network performance, during the detection phase, incoming traffic is
mirrored exploiting the mirroring feature provided by the SDN controller. In this way, the
original traffic is still able to reach the intended destination without any delay, as shown in Figure

Figure 5. Use Case #1: Firewall filtering traffic flows based on
application ports.

 SoftFIRE

13

6 (a). Then, Suricata is able to inspect the mirrored traffic and react when a malicious flow is
detected, as shown in Figure 6 (b), and then drop packets from the malicious VM.

Figure 6. Use Case #2: Traffic mirroring

In this use case, two SDN “match” rules are needed that mirror the traffic flows from the two
source VMs (Source_VM-1 and Source_VM-2) towards the Suricata VNF. Initially, the destination
VM receives both the legitimate and the malicious traffic (as in Figure 6(a)), because the security
VNF is not yet aware of the malicious behaviour. When the IDS functionality of the security VNF
detects a malicious signature contained in Source_VM-2’s packets, it generates an SDN
instruction to drop all the packets from this VM and sends it to the SDN controller (as shown in
Figure 6(b)).

6 Future Work: Distributed Security Probes

In this section, a new method for Security Manager is proposed. The proposal aims to provide
an extension of the current security monitoring and assurance capabilities within the SoftFIRE
platform, by further extending the monitoring capability to cover not only a single tenant at a
time, but also multiple tenants.

Currently, Security Manager monitors only internal traffic of a single tenant belonging to a single
testbed, yet it could be interesting to monitor the network traffic of the whole SoftFIRE platform.
This would allow dynamic deployment and re-configuration of security policies through security
probes, each placed in a component testbed, and able to inspect and detect suspicious network
traffic flows. This is illustrated in Figure 7, where multiple component testbed are linked via VPN,
as in SoftFIRE. Each component testbed may be running different network services.

In the figure, a chain of security probes are shown, which monitor traffic of the whole platform,
and force some traffic flows to go through a sequence of running network services. With an SDN
controller, it is possible to define and modify traffic flow rules. The solution allows to inspect
traffic flows over the whole platform, and enables a platform-wide reaction to malicious traffic.
It involves generation of alerts, and also instructing an SDN controller to block malicious network
traffic. Such alerts can be analysed in a dashboard/console environment to understand the
features of the malicious activity, or could be linked to automation engines that act upon
detection of such attacks. In either case, the SDN controller can then centrally define and
enforce security policies to be applied on the platform.

 SoftFIRE

14

Figure 7. Schema for distributed security probes.

It must be noted that some network services may be running on local networks that are not
reachable from outside (no floating IP address assigned). To be able to forward traffic to a
destination that has no floating IP address, some specific SDN traffic rules must be set up.

7 Conclusions

In this white paper, SoftFIRE presents its security solution adopted to integrate a security
concept, Security as a Service (SECaaS), on the NFV platform provided by the Project. The
concept is presented in detail, motivating the importance of providing security-oriented
resource(s) to experimenters, and describing the main benefits of the approach.

First, a number of approaches are mentioned, explaining their principal motivations, before
focusing on the approach taken by the Project. SoftFIRE’s Middleware component Security
Manager is described as the solution developed in order to implement SECaaS. Then, the paper
explains how security related capabilities are provided to experimenters by the Security
Manager. Users can integrate security features directly in their experiment, i.e. virtualised
security. This has the advantage of full exploitation of the virtual environment provided by NFV
technologies. By deploying the SECaaS concept, the Project has demonstrated its capability to
provide virtual security functionalities directly to end-users, i.e. experimenters. The Project
believes that its SECaaS deployment is a contribution to the NFV-SDN communities, towards
realising programmable and inter-operable 5G platforms.

 SoftFIRE

15

Although the provided solution covers security VNFs that can monitor the testbed environment
and take action, the Project notes that for environments in which platform access is not
controlled, there is still a need for measures to protect such environments from malicious
outsider activities. In other words, for platforms in which an undefined number of platform users
run a number of heterogeneous services, multiple security technologies should be in place.

The paper notes that, in SoftFIRE, this was not needed, as users were provided with VPN access
credentials, which enabled filtering and regulating the access to the platform. Furthermore, the
platform is equipped with a monitoring system that tracks all user activities, thanks to SoftFIRE’s
Middleware logs that provide a way to identify unusual and potentially dangerous activity by
the platform’s users.

Finally, the paper mentions the concept of security chains, to discuss how to further improve
network security in a federated NFV-SDN environment consisting of multiple testbeds. This
motivates a future scenario in which more security capabilities can be added to the SoftFIRE
platform. In this scenario, placing monitoring probes over the platform, which is represented by
a security network service, is presented as a distributed security monitoring solution.

 SoftFIRE

16

Bibliography

[1] “Network Function Virtualisation: State-of-the-Art and Research Challenges”, Rashid Mijumbi, Joan

Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, Raouf Boutaba, IEEE Communications

Surveys & Tutorials, vol 18, no 1, 236-262, September 2015,

[2] “Software-Defined Networking: A Comprehensive Survey”, Diego Kreutz, Fernando M. V. Ramos,

Paulo Esteves Veríssimo, Christian Esteve Rothenberg, Siamak Azodolmolky, Steve Uhlig,

Proceedings of the IEEE, vol 103, no 1, pp 14-76, January 2015,

[3] EU SoftFIRE project, https://www.softfire.eu/

[4] SoftFIRE Middleware, http://docs.softfire.eu/softfire-middleware/

[5] SoftFIRE Security Manager, http://docs.softfire.eu/security-manager/

[6] “Security position paper – network function virtualization”, Cloud Security Alliance,

https://cloudsecurityalliance.org/download/security-position-paper-network-function-

virtualization/

[7] FIRE initiative, https://www.ict-fire.eu/

[8] Open Baton, https://openbaton.github.io/

[9] OpenStack open source cloud computing software, https://www.openstack.org/

[10] ETSI NFV Architectural Framework,

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

[11] “First wave of experiments on the SoftFIRE testbed”, EU SoftFIRE white paper, March 2018,

https://www.softfire.eu/wp-content/uploads/White-Paper-5-First-Wave-of-Experiments-on-the-

SoftFIRE-Testbed.pdf

[12] FITeagle, http://fiteagle.github.io/

[13] SFA, https://wiki.confine-project.eu/sfa:start

[14] TOSCA, http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

[15] SoftFIRE Experiment Manager, http://docs.softfire.eu/experiment-manager/

[16] SoftFIRE White Paper: “SoftFIRE Approach to Experiment Management: Why and How” June 2017

available at https://www.softfire.eu/publications/white-papers/

[17] OpenVPN, https://openvpn.net/

[18] Service function chaining architecture, IETF, https://tools.ietf.org/html/rfc7665

[19] UncomplicatedFirewall, https://wiki.ubuntu.com/UncomplicatedFirewall

[20] pfSense, https://www.pfsense.org/

[21] Suricata, https://suricata-ids.org/

[22] SoftFIRE NFV Manager, http://docs.softfire.eu/nfv-manager/

[23] OpenStack Newton, https://www.openstack.org/software/newton/

[24] Elastic Stack (ELK), https://www.elastic.co/elk-stack

[25] The FreeBSD project, https://www.freebsd.org/

[26] Openstack Port Security, https://docs.openstack.org/dragonflow/latest/specs/mac_spoofing.html

[27] OpenDaylight, https://www.opendaylight.org/

[28] OpenSDNcore, http://www.opensdncore.org/

[29] Open Virtual Switch, http://openvswitch.org/

[30] OpenFlow, https://www.opennetworking.org/sdn-resources/openflow

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rashid%20Mijumbi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Joan%20Serrat.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Joan%20Serrat.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Juan-Luis%20Gorricho.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Niels%20Bouten.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Filip%20De%20Turck.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raouf%20Boutaba.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Diego%20Kreutz.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fernando%20M.%20V.%20Ramos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paulo%20Esteves%20Ver.AND..HSH.x00ED;ssimo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christian%20Esteve%20Rothenberg.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Siamak%20Azodolmolky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Steve%20Uhlig.QT.&newsearch=true
https://www.softfire.eu/
http://docs.softfire.eu/softfire-middleware/
http://docs.softfire.eu/security-manager/
https://cloudsecurityalliance.org/download/security-position-paper-network-function-virtualization/
https://cloudsecurityalliance.org/download/security-position-paper-network-function-virtualization/
https://www.ict-fire.eu/
https://openbaton.github.io/
https://www.openstack.org/
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.softfire.eu/wp-content/uploads/White-Paper-5-First-Wave-of-Experiments-on-the-SoftFIRE-Testbed.pdf
https://www.softfire.eu/wp-content/uploads/White-Paper-5-First-Wave-of-Experiments-on-the-SoftFIRE-Testbed.pdf
http://fiteagle.github.io/
https://wiki.confine-project.eu/sfa:start
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.softfire.eu/experiment-manager/
https://www.softfire.eu/publications/white-papers/
https://openvpn.net/
https://tools.ietf.org/html/rfc7665
https://wiki.ubuntu.com/UncomplicatedFirewall
https://www.pfsense.org/
https://suricata-ids.org/
http://docs.softfire.eu/nfv-manager/
https://www.openstack.org/software/newton/
https://www.elastic.co/elk-stack
https://docs.openstack.org/dragonflow/latest/specs/mac_spoofing.html
https://www.opendaylight.org/
http://www.opensdncore.org/
http://openvswitch.org/
https://www.opennetworking.org/sdn-resources/openflow

 SoftFIRE

17

List of Acronyms and Abbreviations

Acronym Meaning

5G Fifth Generation Mobile Network

ACL Access Control List

API Application Programming Interface

DPI Deep Packet Inspection

ELK Elasticsearch-Logstash-Kibana

ETSI European Telecommunications Standards Institute

FIRE Future Internet Research and Experimentation

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

ID Identifier

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

IPv4 Internet Protocol version 4

JSON JavaScript Object Notation

LAN Local Area Network

MAC Medium Access Control

NFV Network Function Virtualisation

NS Network Service

ODL OpenDaylight

OVS Open Virtual Switch

REST REpresentational State Transfer

SDN Software Defined Network

SECaaS Security-as-a-Service

SFA Slice-based Federated Architecture

TCP Transport Control Protocol

TOSCA Topology and Orchestration Specification for Cloud Applications

UFW UncomplicatedFirewall

VDU Virtual Deployment

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VPN Virtual Private Network

 SoftFIRE

18

Disclaimer

This document contains material, which is the copyright of certain SoftFIRE consortium parties, and may not be
reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from the proprietor of that
information.

Neither the SoftFIRE consortium as a whole, nor a certain part of the SoftFIRE consortium, warrant that the
information contained in this document is capable of use, nor that use of the information is free from risk, accepting
no liability for loss or damage suffered by any person using this information.

SoftFIRE has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement no. 687860.

